Assessment of the boundary line approach for predicting N2O emission ranges from Australian agricultural soils
نویسندگان
چکیده
This study aimed to assess the feasibility of predicting ranges in N2O emission with a boundary line approach using a few key driving factors. Intact soil cores (9 cm dia. and ~20 cm in depth) were collected from pasture, cereal cropping and sugarcane lands and incubated at various temperature and moisture conditions after addition of different forms of mineral nitrogen (NH4 and NO3). The pasture and sugarcane soils showed greater N2O production capacity than the cropping soils with similar mineral N and organic C contents or under similar temperature and water filled pore space (WFPS%), and thus different model parameters need to be used. The N2O emission rates were classified into three ranges: low (< 16 g N2O/ha/day), medium (16 –160 g N2O/ha/day) and high (> 160 g N2O/ha/day). The results indicated that N2O emissions were in the low range when soil mineral N content was below 10 mg N/kg for the cropping soils and below 2 mg N/kg for the pasture and sugarcane soils. In soils with mineral N content exceeding the above thresholds, the emission rates were largely regulated by soil temperature and WFPS and the emission ranges could be estimated using linear boundary line models that incorporated both temperature and WFPS. Using these key driving factors (land use, temperature, WFPS and mineral N content), the boundary line models correctly estimated the emission ranges for 85% of the 247 data points for the cropping soils and 59% of the 271 data points for the pasture and sugarcane soils. In view of the fact that N2O emissions from soil are often very variable and difficult to predict and that the soil and environmental conditions applied in this study differed substantially, the above results suggested that, in terms of accuracy and feasibility, the boundary line approach provides a simple and practical alternative to the use of a single emission factor and more complex process-based models.
منابع مشابه
Information Properties of Boundary Line Models for N2O Emissions from Agricultural Soils
Boundary line models for N2O emissions from agricultural soils provide a means of estimating emissions within defined ranges. Boundary line models partition a twodimensional region of parameter space into sub-regions by means of thresholds based on relationships between N2O emissions and explanatory variables, typically using soil data available from laboratory or field studies. Such models are...
متن کاملIron: The Forgotten Driver of Nitrous Oxide Production in Agricultural Soil
In response to rising interest over the years, many experiments and several models have been devised to understand emission of nitrous oxide (N2O) from agricultural soils. Notably absent from almost all of this discussion is iron, even though its role in both chemical and biochemical reactions that generate N2O was recognized well before research on N2O emission began to accelerate. We revisite...
متن کاملGreenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada
Agricultural soils can constitute either a net source or sink of the three principal greenhouse gases, carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). We compiled the most up-to-date information available on the contribution of agricultural soils to atmospheric levels of these gases and evaluated the mitigation potential of various management practices in eastern Canada and northe...
متن کاملNitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain
The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or fo...
متن کاملNitrous oxide emission at low temperatures from manure-amended soils under corn (Zea mays L.)
Manure fertilization of soil significantly impacts the level of nitrous oxide (N2O) emission. Despite their short duration, periods of significant N2O emissions during soil thaws in winter and spring are an important portion of the total annual emissions from agricultural lands. The goal of this study was to understand the effects of tillage, moisture content and manure application on N2O emiss...
متن کامل